

U.S. DEPARTMENT OF Impact of mineral reactive surface area approximations on predictions of mineral dissolution rates in a CO_2 injection experiment

Elizabeth H. Mitnick¹, Lauren E. Beckingham², Shuo Zhang¹, Carl I. Steefel², Li Yang², Marco Voltolini², Alexander M. Swift³, Jonathan Ajo-Franklin², David R. Cole³, Julie M. Sheets³, Saeko Mito⁴, Ziqiu Xue⁴, Donald J. DePaolo^{2,1}

¹University of California, Berkeley, ²Lawrence Berkeley National Laboratory, ³Ohio State University, ⁴Research Institute of Innovative Technology for the Earth (RITE)

Abstract

Injection of supercritical CO₂ into porous reservoirs, or geologic carbon sequestration, is a promising means of reducing atmospheric CO₂ emissions. However, the rate and extent of reactions between injected fluid and surrounding geology is not well understood. Continuum-scale modeling has emerged as a tool to predict in situ mineral reaction rates, although a major challenge associated with this approach lies in the uncertainty associated with mineral reactive surface areas.

The present study is aimed at evaluating the impact of mineral reactive surface area approximations on predictions of reaction rates in a powder dissolution experiment. Reservoir samples from the Nagaoka pilot CO₂ injection site in Japan were reacted with CO_2 -acidified brine (p CO_2 = 100 bars) in a flowthrough reactor at 50° C and the effluent chemistry from the reactor was measured. The multicomponent reactive transport code CrunchTope is used to model both steady state and time-dependent effluent chemistry as a means of evaluating classical and novel image-based approximations of surface area. Reactive surface area approximations evaluated include physical surface areas, i.e., geometric and specific, and reactive-site weighted surface areas. In the simulations, multiple pools of the major reactive phases with different grain sizes and thus specific surface area were considered. Results indicate that the use of BET-based grain-size specific mineral surface areas are the most accurate way of matching observed mineral dissolution rates in the well-stirred powder experiments, although these conclusions may not apply equally to core samples where the pore structure is intact.

Nagaoka Reservoir Rock

Rock samples are from well cores from the CO₂ injection test site in Nagaoka, Japan.

Sample depth = 1093 m

Feldspar and Pyroxene Group **Mineral Compositions from QEMSCAN** Analyses

	C d		
	Percentage of total pyroxene- grouped phases (%)	Phase description	Ideal Composition Composition using QEMSCAN
	75.7	Ferrosilite	FeSiO ₃ -
MOTO DOLL ROMADO I	20.4	Augite	(Ca,Na)(Mg,Fe,Al)(Si,Al) ₂ O ₆ (Ca _{0.98} Na _{0.02})(Mg _{0.65} Fe _{0.25} Al _{0.1})(Si _{0.96} Al _{0.04}) ₂ O ₆
DATE ROLL AND PART	3.5	Epidote	Ca ₂ (Al ₂ Fe ³⁺)(Si ₂ O ₇) (SiO ₄)(O)(OH)
STATE A LEASE DIRECTORY	0.3	Others	
			Percentage
	M do		of total feldspar- grouped phases (%)
		A Star	6.6 Anorthite CaAl ₂ Si ₂ O ₈ -
		Jak of	59.4 Labradorite (Ca,Na)(Al(Al,Si)Si ₂ O ₈) (Ca _{0.62} Na _{0.38})(Al(Al _{0.62} Si _{0.38})Si ₂ O ₈)
	KUT	12 Stor	28.5 Albite NaAlSi ₃ O ₈ -
A AND THE SALE AND A CONTRACTOR		Shi Ch	5.5 Sanidine KAISi ₃ O ₈ -
Here and the second sec			Mineral compositions in the sample determined by QEMSCAN analysis are entered into the reactive transport model's thermodynamic database.
 en prigrade Coloria Coloria<td>L. C. mn</td><td></td><td>Literature values of mineral dissolution rate constants were compiled exclusively from studies using flowthrough reactors</td>	L. C. mn		Literature values of mineral dissolution rate constants were compiled exclusively from studies using flowthrough reactors

BET-Based Grain-Size Specific Mineral Surface Area

Literature BET grain size ranges (squares) compared with estimated grain sizes based on image analysis and model-fit SA (circles)

Assuming a spherical particle, the geometric surface area (GSA, in units of m^2/g) can be calculated as a function of particle diameters according to the following equation:

d = particle diameter and ρ = mineral density

The geometrical surface area is related to the BET surface area (BET) through a surface roughness factor (SRF):

mass; $GSA_i = \frac{6}{d\rho}$

 $GSA_i = \frac{SurfaceArea_i^{total}}{1}$

BET = GSA * SRF

Evaluating Mineral Surface Area Approximations Using CrunchTope

How does Crunch handle surface area inputs?

- 1. SSA (m^2/g) x molar weight of mineral (g/mol)
- 2. Divide by molar volume (mol/m³) \rightarrow m² mineral/m³ mineral.
- 3. Multiply by volume fraction (m³ mineral/m³ porous media), \rightarrow m² mineral/m³ media.
- 4. This value A gets used in rate equation (TST).

under controlled T,P conditions.

Mineral Surface Area Approximations

We compiled a range of mineral surface area estimates to evaluate in our model, including total or specific surface area (SSA), and effective surface area (ESA) estimates.

BET SA of pure minerals, literature values (thick black line)

Image perimeter SSA (x)

Image perimeter SSA with scaling factor (*)

Adjusted GSA- smooth sphere ESA (o)

Model results shown in blue (+)

Time (hours)

Si

Summary of findings

Advanced surface area estimates do not consistently over- or under-predict effluent concentrations of major cations.

Only simulations with image-based and high literature BET SA approximations approach time-dependent dissolution behavior.

Best model fits to powder dissolution experiment data are attained with BETbased grain size specific formulations of surface area.

To determine if these estimates are the best approximations of surface area overall, they need to be tested on material with intact pore structure.

References

Stillings & Brantley 1995. Geochim. et Cosmochim. Act., 59, 1483-1496.; White & Peterson 1990. in Melchior et al. 1990, ACS Symposium, ACS. Washington, D.C.; Chiyonobu et al. 2013. Energy Proc., 37, 3546-3553.; Oelkers et al., 1994, Geochim. et Cosmochim. Act., 58, 2011-2024; Gudbrandsson et al., 2014. Geochim. et Cosmochim. Act., 139, 154-172.; Tester et al., 1994, Geochim. et Cosmochim. Act., 58, 2407-2420.

Acknowledgements

This work was supported as part of the Center for Nanoscale Control of Geologic CO2 (NCGC) , an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.